WORKSHOP ON CORROSION OF STEEL IN CONCRETE

17-18 September 2018, University of Aveiro, Portugal

CORROSION OF STEEL

Alexandre Bastos

(acbastos@ua.pt)

university of aveiro theoria poiesis praxis

Long Lasting Reinforced Concrete for Energy Infrastructure under Severe Operating Conditions Coordinator: SINTEF

Objectives

Introduce (in 40 minutes) aspects of metallic corrosion that will be appearing recurrently through the Workshop.

Provide a refresh of concepts and bring the language to a common ground.

Overview of iron and steel corrosion but no focus on concrete, which will be highlighted in the next session.

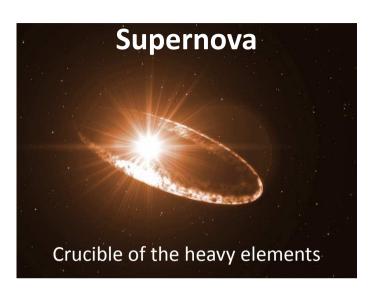
Keep a phenomenological description. Experimental methods and results will be presented in a subsequent communication.

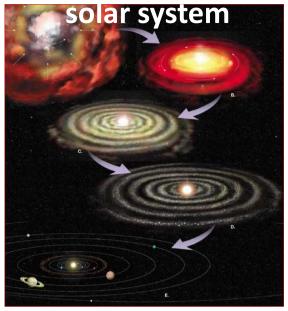
Contents

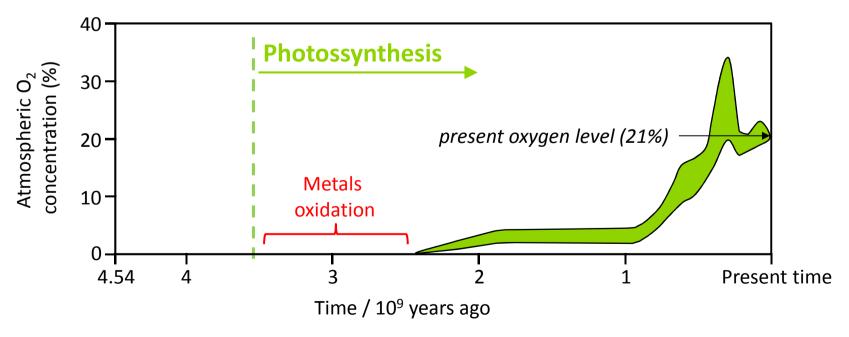
Definition of corrosion. Why metals corrode? Thermodynamics. Corrosion reactions. Mechanism and kinetics. Passivity. Critical environment factors (pH, O₂, humidity, ...) Forms of corrosion. Corrosion control. Coatings and paints. Corrosion inhibitors. Cathodic protection. Conclusion.

Definition of Corrosion

International standard definition of corrosion:

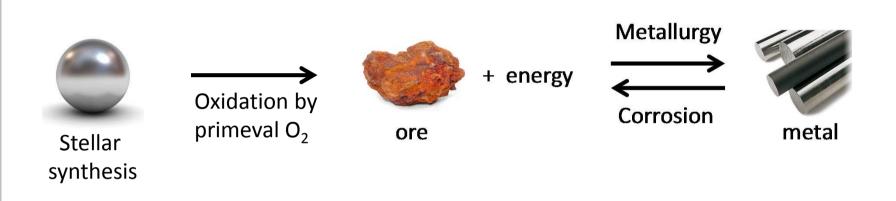

"Physicochemical interaction between a *metal* and its environment which results in changes in the properties of the metal and which may often lead to impairment of the function of the metal, the environment, or the technical system of which these form a part". ISO 8044 -1986 - Corrosion of metals and alloys - Terms and definitions.

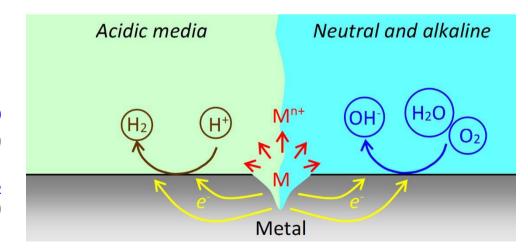

International Union of Pure and Applied Chemistry (IUPAC) :


"Corrosion is an irreversible interfacial reaction of a *material* (metal, ceramic, polymer) with its environment which results in consumption of the material or in dissolution into the material of a component of the environment. Often, but not necessarily, corrosion results in effects detrimental to the usage of the material considered. <u>Exclusively physical or mechanical processes such as melting or evaporation</u>, abrasion or mechanical fracture are not included in the term <u>corrosion</u>". Pure & Appl. Chem. 61 (1989) 19.

Why metals corrode?

Evolution of our





Why metals corrode?

 $M(s) \rightarrow M^{n+}(aq) + ne^{-}$

Reduction of H_2O 2H⁺(aq) + 2e⁻ \rightarrow $H_2(g)$

Reduction of dissolved O_2 $O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-(aq)$

			TABLE 2.1 Standard Electromotive Force Potentials (Reduction Potentials)	
			Reaction	Standard Potential, e° (volts vs. SHE)
Energy ne	ecessary	Noble	$Au^{3+} + 3e^{-} = Au$	+1.498
	· · · · · · · · · · · · · · · · · · ·		$Cl_2 + 2e^- = 2Cl^-$	+1.358
to pro	oduce Tendency		$O_2 + 4H^+ + 4e^- = 2H_2O (pH 0)$	+1.229
the m	netal to oxidize		$Pt^{2+} + 3e^- = Pt$	+1.118
		, 	$NO_3^- + 4H^+ + 3e^- = NO + 2H_2O$	+0.957
▲	· • • •		$O_2 + 2H_2O + 4e^- = 4OH^- (pH^-7)a$	+0.82
	Na		$Ag^+ + e^- = Ag$	+0.799
			$Hg_2^{2+} + 2e^- = 2Hg$	+0.799
	Mg		$Fe^{3+} + e^{-} = Fe^{2+}$	+0.771
			$O_2 + 2H_2O + 4e^- = 4OH^- (pH 14)$	+0.401
	Al		$Cu^{2+} + 2e^- = Cu$	+0.342
	7		$Sn^{4+} + 2e^- = Sn^{2+}$	+0.15
	Zn			0.000
	Fe		$2\mathrm{H}^{+} + 2\mathrm{e}^{-} = \mathrm{H}_{2}$	0.000
	re		$Pb^{2+} + 2e^{-} = Pb$	-0.126
	Ni		$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-} = \mathrm{Sn}$	-0.138
	INI		$Ni^{2+} + 2e^- = Ni$	-0.250
	Sn		$Co^{2+} + 2e^{-} = Co$	-0.277
	311		$Cd^{2+} + 2e^{-} = Cd$	-0.403
	Cu		$2H_2O + 2e^- = H_2 + 2OH^- (pH 7)^a$	-0.413
	Cu		$\mathrm{Fe}^{2+} + 2\mathrm{e}^{-} = \mathrm{Fe}$	-0.447
	Ag		$Cr^{3+} + 3e^{-} = Cr$	-0.744
	-		$Zn^{2+} + 2e^- = Zn$	-0.762
	Pt		$2H_2O + 2e^- = H_2 + 2OH^- (pH 14)$	-0.828
			A1 ³⁺ + 2 - A1	-1.662
	Au I		$Al^{3+} + 3e^{-} = Al$ $Mg^{2+} + 2e^{-} = Mg$	-2.372
			Ng + 2e = Mg $Na^+ + e^- = Na$	-2.71
		Active	$K^+ + e^- = K$	-2.931

^aNot a standard state but included for reference.

Source: Handbook of Chemistry and Physics, 71st ed., CRC Press, 1991.

Thermodynamics

44 Ch. 2 / Thermodynamics and Electrode Potential

Copper and iron. Tendency to oxidize?

Iron nail in copper sulphate solution.

Fe + Cu²⁺ → Fe²⁺ + Cu $\Delta G < 0 \text{ spontaneous}$ $\Delta G = -nFE$ Cu²⁺(aq) + 2e⁻ → Cu(s) E° = 0.342 V Fe²⁺(aq) + 2e⁻ → Fe(s) E° = -0.447 V

Cu has more tendency to be reduced than Fe Cu will be reduced, Fe will oxidize.

	Reaction	Standard Potential, e° (volts vs. SHE)
Noble	$Au^{3+} + 3e^{-} = Au$	+1.498
	$Cl_2 + 2e^- = 2Cl^-$	+1.358
	$O_2^{-} + 4H^+ + 4e^- = 2H_2O (pH 0)$	+1.229
	$Pt^{2+} + 3e^- = Pt$	+1.118
	$NO_3^- + 4H^+ + 3e^- = NO + 2H_2O$	+0.957
	$O_2 + 2H_2O + 4e^- = 4OH^- (pH 7)a$	+0.82
	$Ag^+ + e^- = Ag$	+0.799
	$Hg_2^{2+} + 2e^- = 2Hg$	+0.799
	$Fe^{3+} + e^{-} = Fe^{2+}$	+0.771
	$O_2 + 2H_2O + 4e^- = 4OH^- (pH 14)$	+0.401
<u> </u>		+0.342
Cu —	$\begin{array}{rcl} Cu^{2+} &+ & 2e^{-} &= & Cu \\ Sn^{4+} &+ & 2e^{-} &= & Sn^{2+} \end{array}$	+0.15
e	$2\mathrm{H}^{+} + 2\mathrm{e}^{-} = \mathrm{H}_{2}$	0.000
	$Pb^{2+} + 2e^{-} = Pb$	-0.126
∆E = E _{Cu} - E _{Fe}	$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-} = \mathrm{Sn}$	-0.138
= 0.789 V	$Ni^{2+} + 2e^- = Ni$	-0.250
	$Co^{2+} + 2e^{-} = Co$	-0.277
	$Cd^{2+} + 2e^{-} = Cd$	-0.403
	$2H_2O + 2e^- = H_2 + 2OH^- (pH 7)^a$	-0.413
Fe 📕	$\mathrm{Fe}^{2+} + 2\mathrm{e}^{-} = \mathrm{Fe}$	-0.447
	$Cr^{3+} + 3e^{-} = Cr$	-0.744
	$Zn^{2+} + 2e^{-} = Zn$	-0.762
	$2H_2O + 2e^- = H_2 + 2OH^- (pH 14)$	-0.828
	$Al^{3+} + 3e^{-} = Al$	-1.662
	$Mg^{2+} + 2e^{-} = Mg$	-2.372
	$Na^+ + e^- = Na$	-2.71
Active	$\mathbf{K}^+ + \mathbf{e}^- = \mathbf{K}$	-2.931

TABLE 2.1 Standard Electromotive Force Potentials (Reduction Potentials)

^aNot a standard state but included for reference.

Source: Handbook of Chemistry and Physics, 71st ed., CRC Press, 1991.

Usually there are no metallic cations in the environment to oxidize the metal...

But,

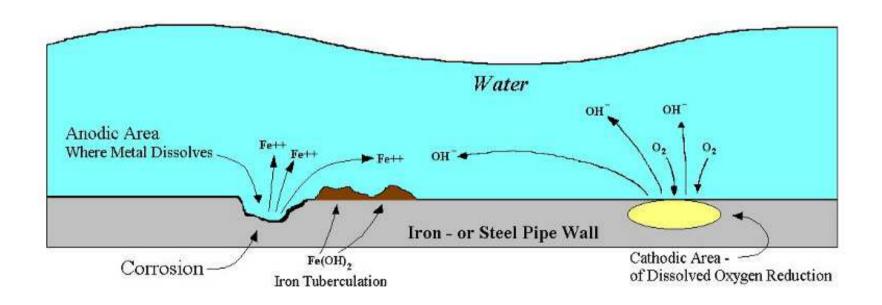
there is water and oxygen.

Most important reactions in corrosion

Metal oxidation

 $M(s) \rightarrow M^{n+}(aq) + ne^{-}$

 H_2O reduction 2H⁺(aq) + 2e⁻ → $H_2(g)$ (acid) 2H₂O(I) + 2e⁻ → $H_2(g)$ + 2OH⁻(aq)


Reduction of O_2 dissolved in water $O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-(aq)$ (neutral or alkaline)

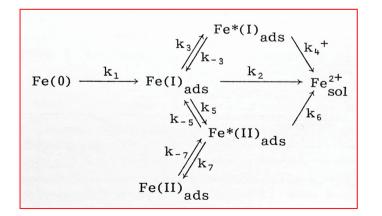
Fe is oxidised by H_2O and O_2

Cu is oxidised by O₂ (acids do not corrode copper)

ri an tr'i S	nte de la sua Angle de 40	Reaction	Standard Potential, e° (volts vs. SHE)
Noble		$Au^{3+} + 3e^- = Au$	+1.498
		$Cl_2 + 2e^- = 2Cl^-$	+1.358
		$O_2 + 4H^+ + 4e^- = 2H_2O (pH 0)$	+1.229
		$Pt^{2+} + 3e^- = Pt$	+1.118
	1.1.1.2.5 [4]	$NO_3^- + 4H^+ + 3e^- = NO + 2H_2O$	+0.957
	0 ₂	$O_2 + 2H_2O + 4e^- = 4OH^- (pH 7)a$	+0.82
		$Ag^+ + e^- = Ag$	+0.799
		$Hg_2^{2+} + 2e^- = 2Hg$	+0.799
		$Fe^{3+} + e^{-} = Fe^{2+}$	+0.771
		$O_2 + 2H_2O + 4e^- = 4OH^- (pH 14)$	+0.401
	Cu	$Cu^{2+} + 2e^{-} = Cu$	+0.342
		$\mathrm{Sn}^{4+} + 2\mathrm{e}^{-} = \mathrm{Sn}^{2+}$	+0.15
	H ₂	$2\mathrm{H}^{+} + 2\mathrm{e}^{-} = \mathrm{H}_{2}$	0.000
		$Pb^{2+} + 2e^{-} = Pb$	-0.126
		$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-} = \mathrm{Sn}$	-0.138
		$Ni^{2+} + 2e^- = Ni$	-0.250
		$Co^{2+} + 2e^{-} = Co$	-0.277
		$Cd^{2+} + 2e^{-} = Cd$	-0.403
	-	$2H_2O + 2e^- = H_2 + 2OH^- (pH 7)^a$	-0.413
	Fe	$Fe^{2+} + 2e^{-} = Fe$	
		$Cr^{3+} + 3e^{-} = Cr$	-0.744
		$Zn^{2+} + 2e^{-} = Zn$	-0.762
		$2H_2O + 2e^- = H_2 + 2OH^- (pH 14)$	-0.828
		$Al^{3+} + 3e^{-} = Al$	-1.662
		$Mg^{2+} + 2e^{-} = Mg$	-2.372
		$Na^+ + e^- = Na$	-2.71
Active		$K^+ + e^- = K$	-2.931

Corrosion cell

Mechanisms of Fe oxidation


$Fe \rightarrow Fe^{2+} + 2e^{-}$

Acid

 $H_{2}O \leftrightarrow (OH)_{ads} + H^{+} + e^{-}$ $FeFe_{k} + (OH)_{ads} \leftrightarrow FeFe_{k}(OH)_{ads}$ $FeFe_{k}(OH)_{ads} + (OH)_{ads} \leftrightarrow Fe_{k}(OH)_{ads} + FeOH^{+} + 2e^{-}$ $FeOH^{+} + H^{+} \leftrightarrow Fe_{sol}^{2+} + H_{2}O$ (k = kink)

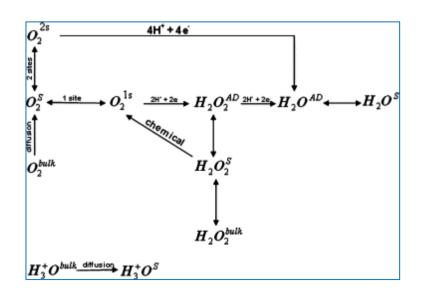
Acid with chloride

 $Fe + Cl^{-} \leftrightarrow Fe(Cl)_{ads} + e^{-}$ $Fe(Cl)_{ads} + H^{+} \leftrightarrow Fe(ClH^{+})_{ads}$ $Fe(ClH^{+})_{ads} \rightarrow FeCl^{+} + H^{+} + e^{-}$ $FeCl^{+} \leftrightarrow Fe^{2+} + Cl^{-}$

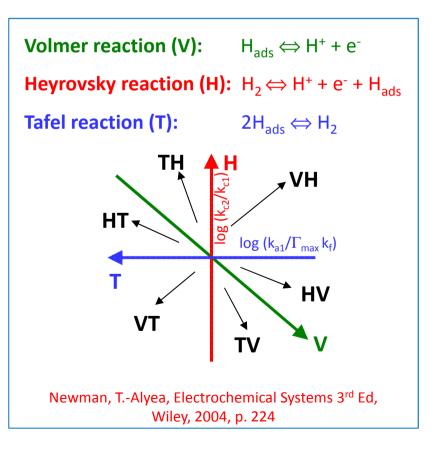
Alkaline Fe + OH⁻ \leftrightarrow Fe(OH)_{ads} + e⁻ Fe(OH)_{ads} + OH⁻ \leftrightarrow FeO_{ads} + H₂O + e⁻ FeO_{ads} + OH⁻ \leftrightarrow HFeO₂⁻ HFeO₂⁻ + H₂O \leftrightarrow Fe(OH)₂ + OH⁻

W.J. Lorenz, H.E. Heusler, in Corrosion Mechanisms, F.Mansfeld (Ed), Marcel Dekker, NY, 1987.

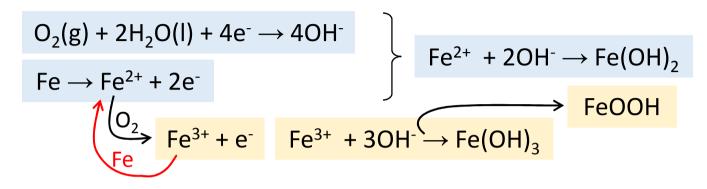
Mechanisms of reduction reactions


Oxygen reduction $O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-$

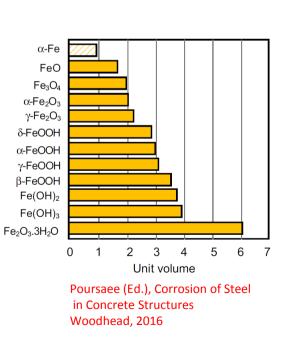
Acid solution


Alkaline solution

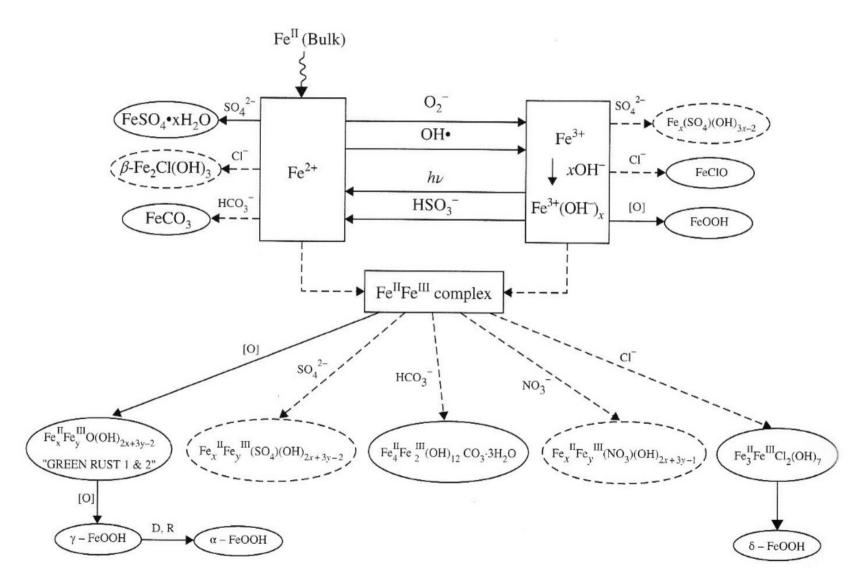
direct reduction direct reduction indirect reduction indirect reduction $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O \quad HO_2^- + H_2O + 2e^- \rightarrow 3OH^-$

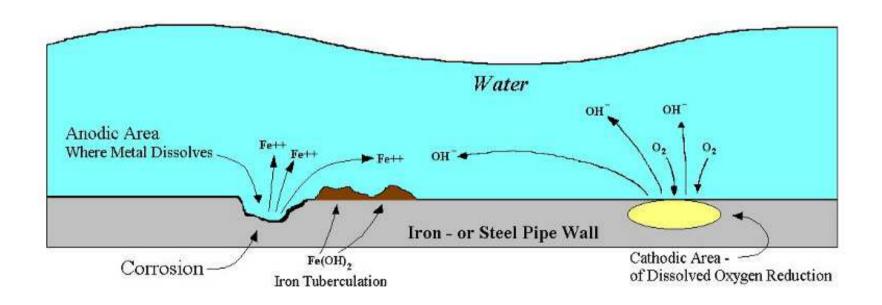

 $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$ $O_2 + 2H_2O + 4e^- \rightarrow 4OH^ O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$ $O_2 + 2H_2O + 2e^- \rightarrow HO_2^- + OH^-$

Water reduction $2H^+(aq) + 2e^- \rightarrow H_2(g)$ $2H_2O(I) + 2e^- \rightarrow 2OH^- + H_2(g)$

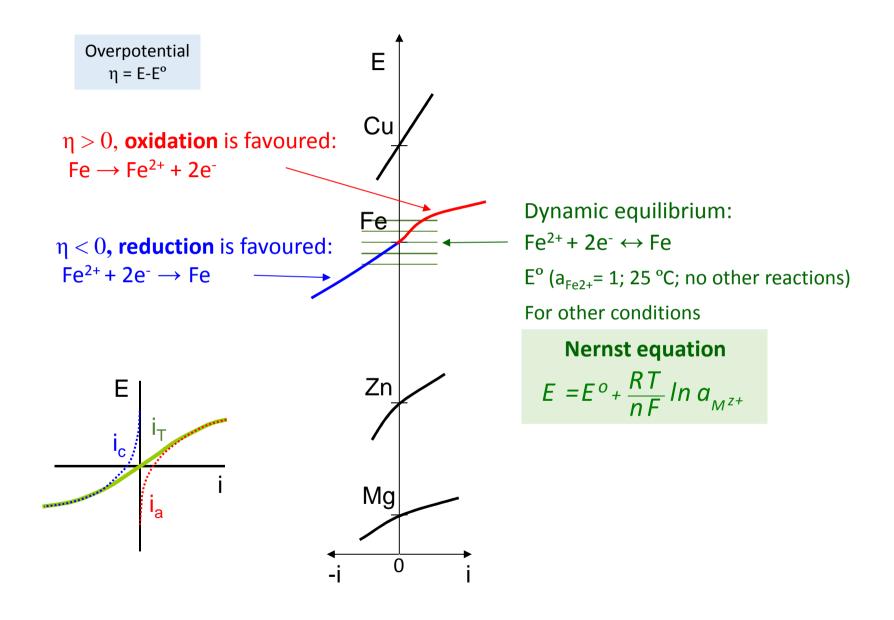


Corrosion products of iron

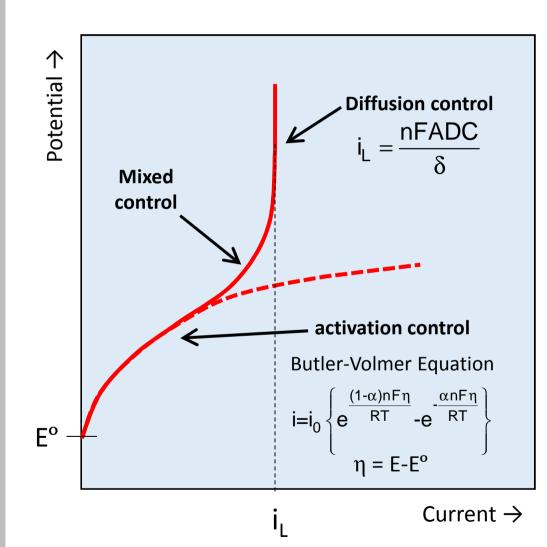


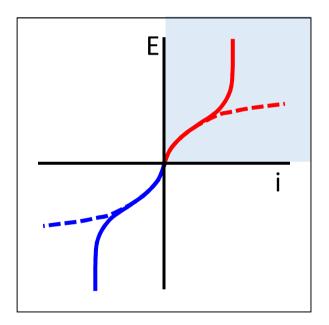

Cornell, Schwertmann, The Iron Oxides 2nd ed, Wiley, 2006

Corrosion products of iron

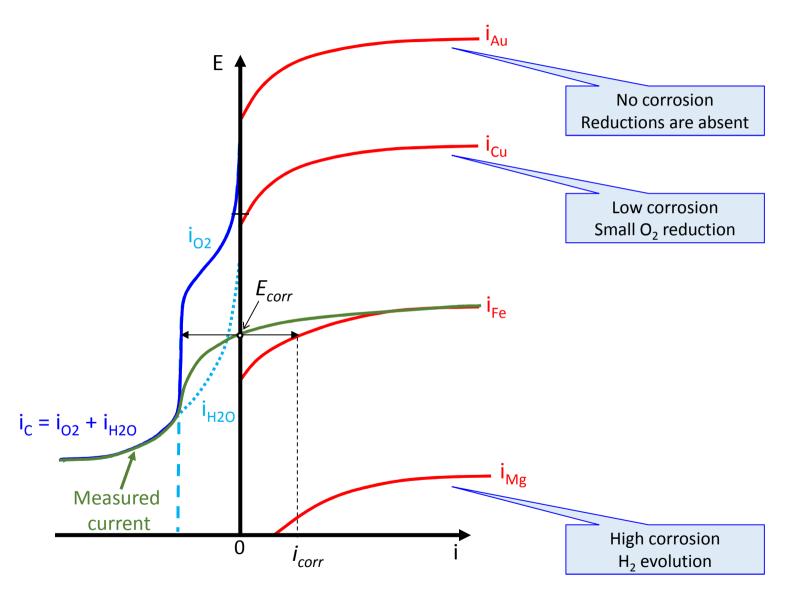


Graedel, Frankenthal, J. Electrochem. Soc. 137 (1990) 2385.


Corrosion cell

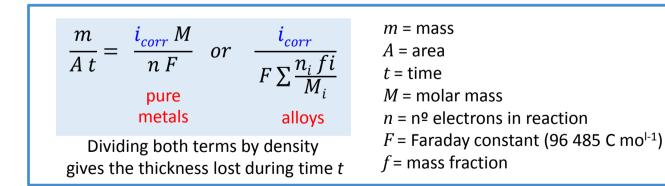


Electrochemical Kinetics



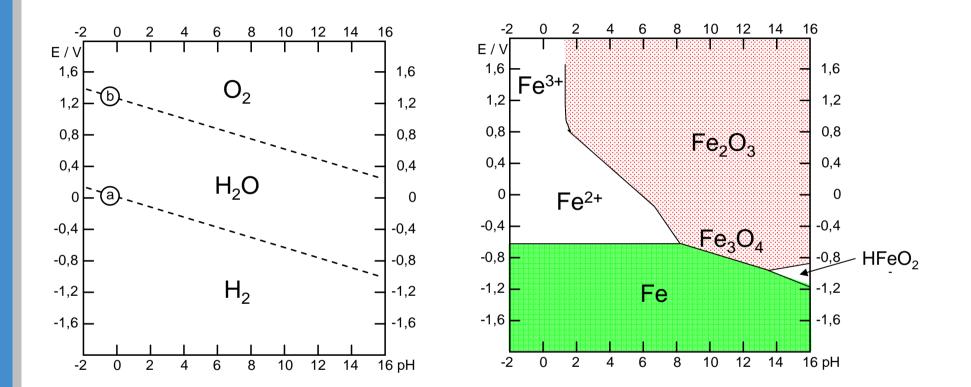
Electrochemical Kinetics

Electrochemical Kinetics of Corrosion



Based on: H.Kaesche, Corrosion of Metals, Springer, 2003

Corrosion rates

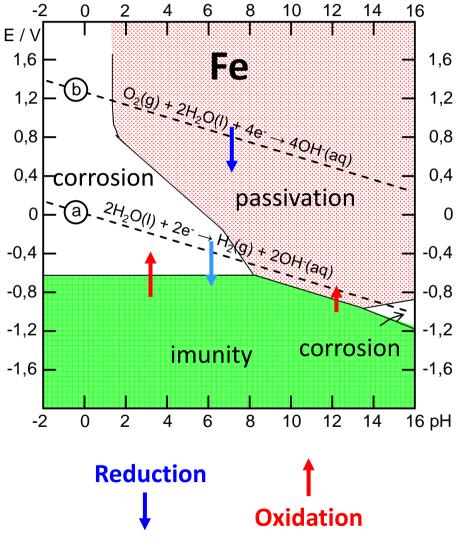

3 equivalent units:

- Corrosion current density (current density by unit area) (A m⁻², mA/cm², μA cm⁻², ...)
- Mass loss (g dm⁻² ano⁻¹, mg dm⁻² d⁻¹, ...)
- Penetration rate (valid only for uniform corrosion) (mm/year, MPY milli-inch per year)

For iron: 1 μ A cm⁻² = 0.25 g m⁻² day⁻¹ = 12 μ m year⁻¹ (M_{Fe} =55.845 g mol⁻¹, d=7.86 g cm⁻³)

Pourbaix diagrams

Nernst equation of a metal | metal ion (M|Mⁿ⁺) half-cell


$$E = E^{o} - \frac{RT}{zF} \ln Q \qquad E = E^{o} - \frac{RT}{zF} \ln \frac{a_{Red}}{a_{Ox}} = E^{o} - \frac{RT}{zF} \ln \frac{a_{M}}{a_{M^{z+}}} = E^{o} - \frac{RT}{zF} \ln \frac{1}{a_{M^{z+}}} = E^{o} + \frac{RT}{zF} \ln a_{M^{z+}}$$

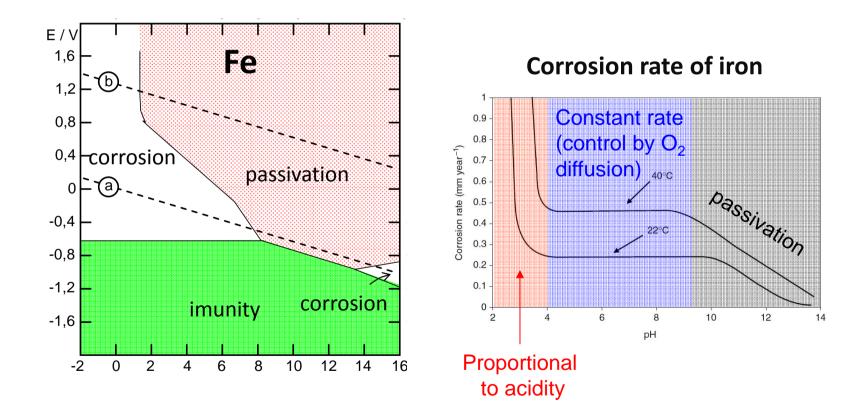
3 regions in Pourbaix diagrams:

Corrosion. Regions where the thermodynamically stable species are the metal ions. Therefore metal dissolution is favourable.

Passivation. Regions where $_{0,4}$ condensed phases containing the metal ion (e.g. metal oxides or hydroxides) are the most stable. If $^{-0,4}$ they form films on the surface, well $^{-0,8}$ adherent and without pores, they $^{-1,2}$ may prevent metal corrosion.

Imunity. In this region, the stable form is the reduced (metallic) form. There is no tendency for the metal oxidation.

Some metals and alloys present extremely low corrosion rates in conditions where thermodinamically they should corrode. The metals are said to be passive and the property is called **passivity**. Important examples are alloys of aluminium, nickel and stainless steels.


Passivation is an elegant phenomenon and one of the reasons why our civilization is based on metallic materials.

It consists on the spontaneous formation of very thin oxide films (typically in the order of angstroms at the surface of some metals and alloys, isolating it from the environment thus preventing its further reaction.

Some metals can be passivated when exposed to oxidizing environments (ex: iron in chromate or nitrite solutions) or by applying anodic polarizations with suficient high current densities (ex: iron in H_2SO_4).

Critical environmental parameters pH

Source: R.W.Revie, H.H.Uhlig, Corrosion and Corrosion Control 4th Ed, Wiley, 2008

Critical environmental parameters O₂ concentration

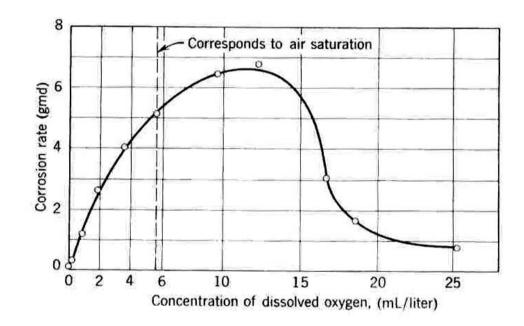


Figure 7.1. Effect of oxygen concentration on corrosion of mild steel in slowly moving distilled water, 48-h test, 25°C [2]. (Reproduced with permission. Copyright 1955, The Electrochemical Society.)

Source: R.W.Revie, H.H.Uhlig, Corrosion and Corrosion Control 4th Ed, Wiley, 2008

Critical enviromental parameters

Cl⁻ concentration

(salinity, conductivity)

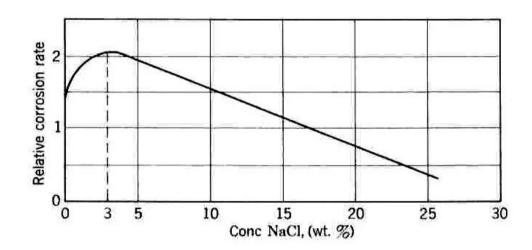
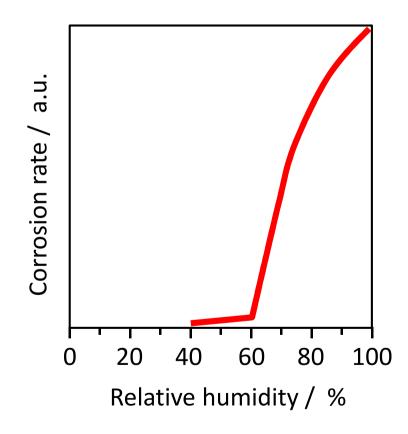
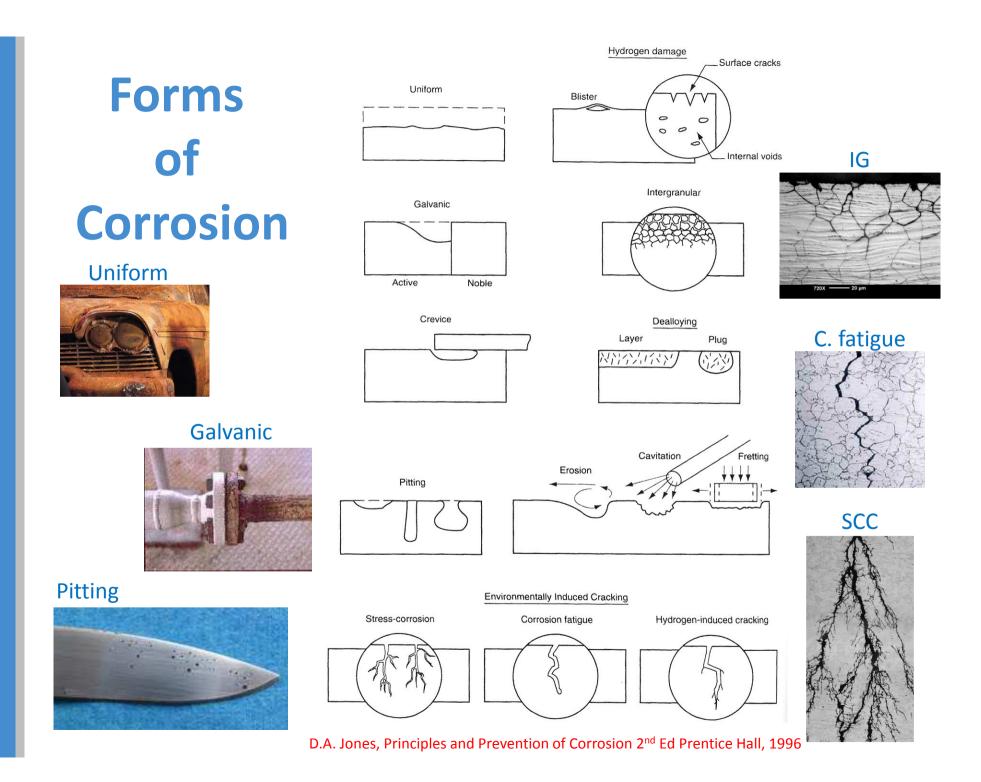
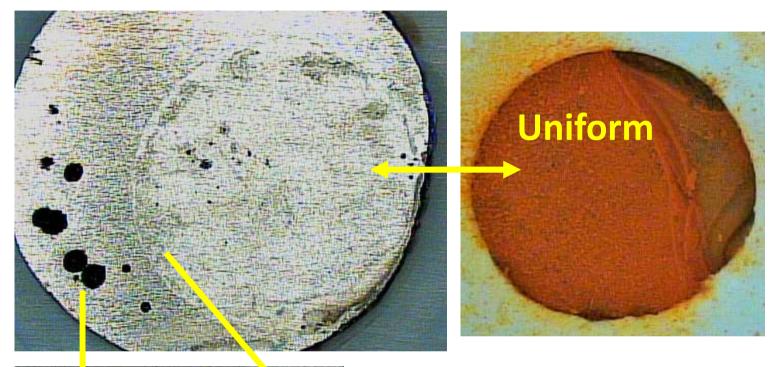
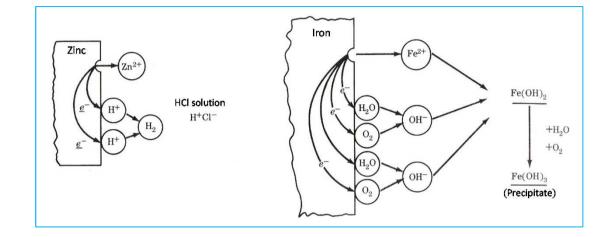




Figure 7.11. Effect of sodium chloride concentration on corrosion of iron in aerated solutions, room temperature (composite data of several investigations).


Source: R.W.Revie, H.H.Uhlig, Corrosion and Corrosion Control 4th Ed, Wiley, 2008

Critical environmental parameters Humidity


Forms of corrosion

Corrosion protection and prevention

Eliminate: Anodic reaction Cathodic reaction Electronic path Ionic path

- **1. Action on the metal**
- **2.** Action on the environment
- 3. Barrier between metal and environment

Corrosion protection and prevention

- Materials selection

Project

- Design of structures and equipmentChoice of placement of structures and equipment

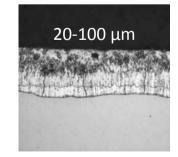
	- Control of environment	 humidity temperature removal of O₂ (and other oxidants) removal of aggressive species (e.g. Cl⁻) control of fluid motion corrosion inhibitors
In service	- Control of potential (electrical protection)	Cathodic protection - Anodic protection
	 Coatings (separation between metal and environment) 	 metallic inorganic (CCC, phosphating, anodising) organic (paints)

Metallic coatings

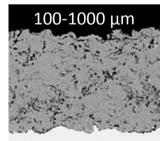
- Barrier effect

- Cathodic protection (some)

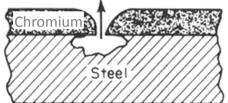
Electroplated chromium

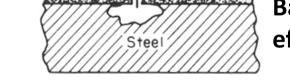


Decorative: 0.05-0.5 μm Hard chrome: 20-100 μm

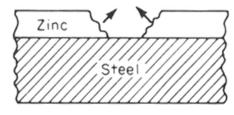


Thermal sprayed aluminium (TSA)



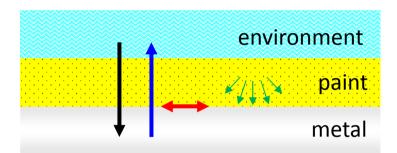

Metallic coatings

Chromium on steel

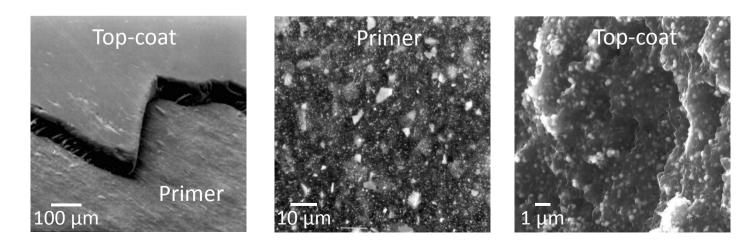

Barrier effect

Zinc on steel

- Barrier - Cathodic protection



Organic coatings (paints)


Widely used, low-price, versatile.

Composition

Binder (first natural oils, now synthetic resins) Pigments (and fillers) Solvents Additives (defoamers, dispersants, thickeners...)

Barrier (water, gases, ions) Barrier (corrosion products) Barrier (ions, high resistance between an. and cat.) Anticorrosive pigments

Corrosion inhibitors

Definition

A corrosion inhibitor is a chemical compound that decreases the corrosion rate of a metal or an alloy.

Classifications

	Anodic inhibitor (decreases the anodic reaction)
Electrochemical effect: -	Cathodic inhibitor (decreases the cathodic reaction)
	Mixed inhibitor (decreases both reactions)

Chemical nature: organic, inorganic

Medium: aqueous solution, vapour, oil, solvent, paint, concrete...

Type of application: pickling, descaling, acid cleaning, preservation, paints, recirculating water systems, ...

Corrosion inhibitors

Acid

- Oxide free surface
- Main cathodic process is H₂ evolution
- Physical adsorption (electrostatic interaction)
- Chemisorption (charge sharing or charge transfer)

Examples:

- Triple bonded hydrocarbons
- Sulfoxides, sulfides, mercaptans,
- Aliphatic, aromatic or heterocyclic compounds containing nitrogen, aldehydes, amines.
 P > Se > S > N > O

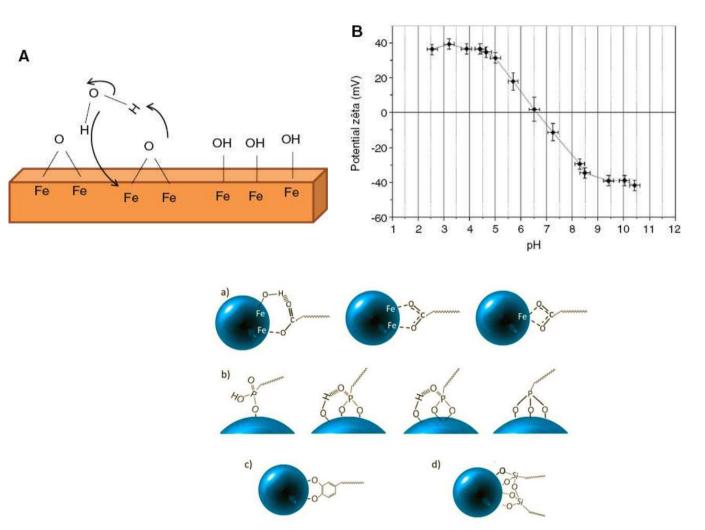
Neutral

- Surface with sparingly soluble oxides, hydroxides, salts
- Main cathodic process is
 O₂ reduction
- **Stabilization** of the oxide surface film,
- Repassivation, repair of defects, plug pores,
- Thick surface layers with poor ionic/electronic conduction

 Cations: Ca²⁺, Mg²⁺, with CO₃²⁻, Ce³⁺ and RE³⁺ (cathodic process)
 Inorganic anions: polyphosphates, phosphates, silicates, borates precipitate (inhibit anodic process).
 Oxidizing ions: chromates, NO₂⁻, ...
 Organic compounds: benzoate, salycilate, cinnamante, tartrate (Adsorption, complexation, ion exchange, chelation (-NH₂, -COOH, -SH, physical barrier with thick films)

Alkaline

Passive surface or active amphoteric surfaces


Action:

- Broadening the pH stability range of amphoteric oxides and hydroxide layers,
- repairing pores,
- decrease the rate diffusion of reactants

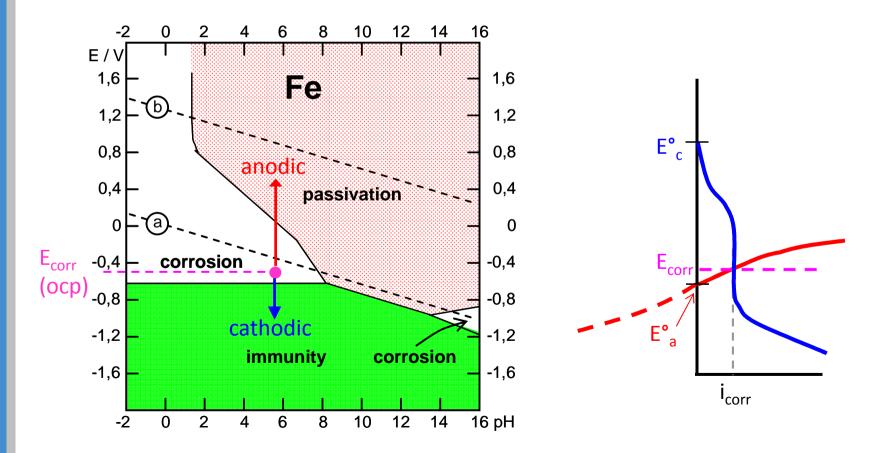
Examples:

Thiourea, phenols, 8hydroxiquinoline, naphtols, gelatin, tannins, sapoin.

Corrosion inhibitors

Figure 4: Possible surface complexes according to the coupling agent: (a) carboxylate, (b) phosphonate, (c) catechol, (d) silane.

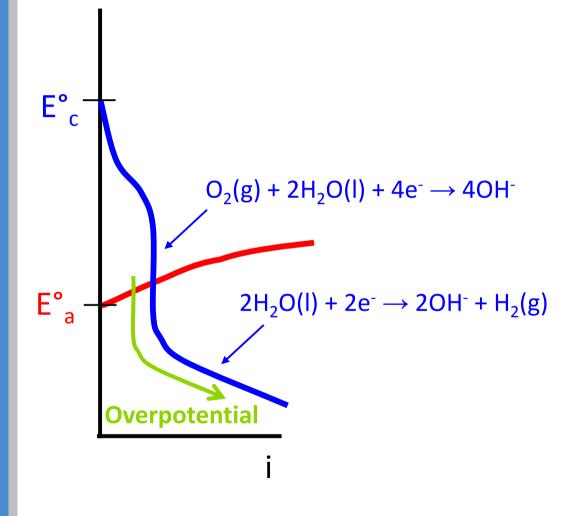
Method widely used to protect naval ships, offshore structures, pipelines, storage tanks, bridges, etc.



With **cathodic protection** the metal to be protected is turned into a cathode. Its potential is made more negative than the corrosion potential. When the potential is inside the immunity region, the metal oxidation becomes thermodinamically impossible and it will not corrode.

2 forms of implementation:

Sacrificial anodes



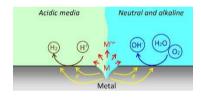
PROTECTED PIPE GROUND LEVEL PIPE (CATHODE) PROTECTIVE CURRENT (+) ANODE

Inert electrodes: Pt in Ti, Pb6Sb1Ag, graphite, Fe14Si4Cr.

Excessive overpotential leads to water reduction and high current.

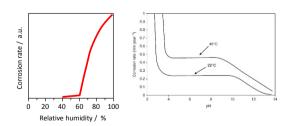
OH⁻: cathodic delamination, paint disbondment.

H₂: H(ads) can enter the metal phase and cause hydrogen embrittlement.


Key messages of this presentation

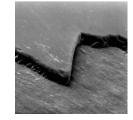
Corrosion as a thermodynamic inevitability

Why metals corrode



2 reactions (oxidation of metal and reduction from the environment)

Kinetics


The importance of environment factors

Corrosion control.

Eliminate anodic reaction, and/or cathodic reaction, and/or flux of electrons and/or flux of ions. Act on the metal, act on the environment or put a barrier between them.

Further reading

Internet sites

http://www.corrosion-doctors.org http://www.efcweb.org http://www.nace.org http://corrosion.ksc.nasa.gov

Books

D.A.Jones, Principles and Prevention of Corrosion 2nd Ed, Prentice Hall, 1996.
M.G.Fontana, Corrosion Engineering 3rd Ed, McGraw-Hill, 1987.
R.W.Revie, H.H.Uhlig, Corrosion and Corrosion Control 4th Ed, Wiley, 2008.
H.Kaesche, Corrosion of Metals, Springer, 2003.
Shreir's Corrosion, 4-Vol. Set, Elsevier Science, 2010.
ASM Handbook vol.13 Corrosion, ASM International, 2003.

This work was supported by the HORIZON 2020 Collaborative project "LORCENIS" (Long Lasting Reinforced Concrete for Energy Infrastructure under Severe Operating Conditions", Grant agreement nº 685445).

www.lorcenis-eu.com

